Soil microbial activity in a Liquidambar plantation unresponsive to CO2-driven increases in primary production

نویسنده

  • R. L. Sinsabaugh
چکیده

The indirect responses of soil microbiota to changes in plant physiology effected by elevated atmospheric carbon dioxide have the potential to alter nutrient availability and soil carbon storage. We measured fine root density, microbial biomass nitrogen, rates of nitrogen mineralization and nitrification, substrate utilization by soil bacteria and extracellular enzyme activities (EEA) associated with bulk soil and fine root rhizoplanes within a 3-year period at the Oak Ridge National Laboratory (ORNL) Free Air Carbon Enrichment (FACE) experiment, situated in a Liquidambar styraciflua plantation. Rhizoplane EEA was similar to that of bulk soil. Prior studies have reported a 21% increase in net primary production (NPP) in the enrichment plots and evidence that additional carbon is reaching the soil system, however we observed no response in any of the variables we measured. These results, which contrast with those from other temperate forest FACE sites, suggest that soil characteristics can influence the magnitude and timing of belowground responses. © 2003 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of 10 years of CO2 fumigation on soil microbial communities and function in a sweetgum plantation

Increased vegetative growth and soil carbon (C) storage under elevated carbon dioxide concentration ([CO2]) has been demonstrated in a number of experiments. However, the ability of ecosystems, either aboveor belowground, to maintain increased C storage relies on the response of soil processes, such as those that control nitrogen (N) mineralization, to climatic change. These soil processes are ...

متن کامل

CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest.

* Greater fine-root production under elevated [CO2] may increase the input of carbon (C) and nitrogen (N) to the soil profile because fine root populations turn over quickly in forested ecosystems. * Here, the effect of elevated [CO)] was assessed on root biomass and N inputs at several soil depths by combining a long-term minirhizotron dataset with continuous, root-specific measurements of roo...

متن کامل

Effect of plantation with native and exotic species on soil CO2 emissions

The aim of this study was to investigate soil respiration in the plantation stands of Acer velutinum, Quercus castaneifolia, Fraxinus excelsior and Pinus brutia and to compare them with the natural stands in Sari educational-research forest of Darabkola. In order to measure physical and chemical properties of soil in each stand, 10 points were selected systematic randomly and samples were taken...

متن کامل

Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated [CO2]

Elevated atmospheric carbon dioxide concentrations [CO2] is projected to increase forest production, which could increase ecosystem carbon (C) storage. This study contributes to our broad goal of understanding the causes and consequences of increased fine-root production and mortality under elevated [CO2] by examining potential gross nitrogen (N) cycling rates throughout the soil profile. Our s...

متن کامل

روند تولید 2CO و تغییر کربن بیومس میکروبی در خاک‌های تیمار شده با کود اوره و مرغی

The addition of organic and inorganic substrates to calcareous soils low in organic matter and nitrogen contents may change soil microbial biomass and activity. In order to investigate the effect of chemical and organic fertilizers on soil CO2 production and microbial biomass C, a field experiment was conducted under maize cultivation. The experimental design was split-plot arranged in randomiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003